Surgical Management of Hearing Loss

Prashant S. Malhotra, MD, FAAP
Pediatric Otolaryngology – Head and Neck Surgery
Director, Hearing Program

Permanent Childhood Hearing Loss Prevalence

- Congenital
 - 1.86 per 1000 live births
- By age 5
 - 2.7 per 1000
- By adolescence
 - 3.5 per 1000

Morton and Nance, NEJM, 2010

Impact of Unidentified Hearing Loss on Children

- Significant effects on language, speech, academic, and social-emotional development
 - Carney AE, Moeller MP, 1998
- Less educational achievement, limited choices for higher education, decreased vocational options
 - Holden-Pitt and Diaz, 1998

Unilateral Hearing Loss

- In the past...“One good ear is all you need”
- More accurately understood now:
 - Language and intelligence likely same as normal hearing children, yet
 - Higher incidence of behavioral problems
 - More likely to repeat a grade (24-35% vs 3%)

Management of Hearing Loss

- Non-surgical habilitation
 - Amplification (Hearing Aids)
- Surgical habilitation
 - Speech and language therapy
 - Early Intervention Services
 - Regular audiologic follow up
Learning Objectives

At the end of this session, participants will be able to:
- feel more familiar with surgical ear anatomy
- identify at least two surgical interventions for conductive hearing loss
- identify at least two surgical interventions for sensorineural hearing loss

“Ear” = Temporal Bone

- External Ear
- External Auditory Canal
- Middle Ear
- Otic Capsule Structures
- Internal Auditory Canal
- Intracranial

External Ear

- Pinna
 - Cosmesis
 - Sound localization
 - Focuses or “funnels” sound
 - ~20dB gain
 - Meatus is air/sound entrance to rest of ear

External Auditory Canal

- Cartilaginous (lateral) and Bony (medial)
 - About ½ each
 - No cerumen at bony portion
 - Anterior: TMJ
 - Posterior: Mastoid

The Tympanic Membrane

- Annulus
- Malleus
- Pars Tensa
- Pars Flaccida
- Attic/Epitympanum
- Mesotympanum
- Incus

The TM - Orientation

- 4 Quadrants
- Clock face
- Malleus lateral process “knee”
- Anterior canal wall bulge
TM – Pulling back the curtain

• Imagine what is BEHIND the eardrum (middle ear)
• “attic” area
• Anterosuperior vs. posterosuperior quadrant

Middle Ear Contents

• Ossicles
• Muscles
 – Stapedius
 – Tensor Tympani
• Nerves
 – Facial Nerve
 – Chorda Tympani
 – CN IX (Jacobson’s)
 – CN X (Arnold’s)
• Cochlea
 – Promontory
 – Round Window
 – Oval Window

Middle Ear

• Epitympanum = Above TM
• Mesotympanum = Behind TM
• Hypotympanum = Below TM

Middle Ear - Pathways

• Aditus ad Antrum (Mastoid)
• Oval Window (Scala Vestibuli)
• Round Window (Scala Tympani)
• Eustachian Tube orifice (Nasopharynx)

Otic Capsule Structures = “Inner Ear”

› Cochlea
 • 2 ½ turns
 • Scala Vestibuli and Scala Tympani
 • Modiolus
 • Cochlear nerve (CN VIII)
› Vestibule
 • Saccule
 • Utricle
 • Inferior/Superior vestibular Nerves (CN VIII)
› Semicircular Canals

Bony and Membranous Labyrinth

• Perilymph and Endolymph (battery)
Classifying Hearing Loss

- **Type:**
 - Conductive Hearing Loss
 - Sensorineural Hearing Loss
 - Mixed Hearing Loss

- **Unilateral/Bilateral**

- **Severity**
 - Mild, Moderate, Severe, Profound

Conductive Hearing Loss

- Interference with reception and transmission of sound through the outer and middle ears

- Aural Atresia
- Ear wax
- Foreign body in ear
- Perforated ear drum
- Middle ear infection or fluid
- Ossicular erosion, discontinuity, fixation or malformations
- Middle ear masses
Surgery for Conductive Hearing Loss

- Repair of aural atresia
- Tympanostomy tubes (667,000/year)
- Myringoplasty/Tympanoplasty
- Removal of masses (i.e. cholesteatoma)
- Management of ossicular fixation/discontinuity
 - Ossicular Chain Reconstruction
 - Stapedectomy
- Bone Anchored Auditory Implant

Abnormal EAC – Aural Atresia

Eustachian Tube

- Connects middle ear to nasopharynx
- Opens by muscular action
- Pressure equalization across TM
- Eustachian Tube Dysfunction (ETD)

Conductive Hearing Loss

- Tympanostomy Tubes – Otitis Media with Effusion (OME)
 - Recurrent acute otitis media (3/6 months, 4/12 months)
 - Bilateral OME > 3 months with:
 - Hearing loss or symptoms from ETD
 - Unilateral or Bilateral OME any duration in “at risk” kids:
 - Speech and language disorders
 - Coexistent permanent hearing loss
 - Autism spectrum, ADHD…
 - Developmental delay
 - Syndromes (Down) or craniofacial disorders that include cognitive, speech or language delays
 - Cleft palate, with or without associated syndrome
 - Blindness or uncorrectable visual impairment

Tympanostomy Tubes – Procedure

- 10-15 minutes
 - Clean wax, incision into ear drum, suction out fluid, place tube, put in drops
- General anesthesia (mask)
- Outpatient
ETD and **Chronic Otitis Media**

Formation of Cholesteatoma (Acquired)

FIGURE 7
Mechanisms of acquired cholesteatoma formations: A, normal tympanic membrane; B, cholesterol granuloma; C, deep retraction with collection of keratin debris; D, infected cholesteatoma with granulation in the middle ear.

Cholesteatoma

Cholesteatoma

Other Whitish Things

Cholesteatoma

Acute Otitis Media *Myringosclerosis* *Myringosclerosis*
Audiogram

- **CONDUCTIVE HEARING LOSS**
 - If no fluid, be concerned!!
 - If >40 dB, be concerned!!
- Mass effect on middle ear transformer
- Erosion of ossicles
- TM perforation
- Altered TM mobility

Goals of Surgery - Cholesteatoma

1. Eradicate Cholesteatoma
 - Make ear “safe” – prevent complications
2. Hearing Reconstruction
 - Ossicular Chain Reconstruction

Can’t always do both at same time...

Tympanoplasty, Mastoidectomy, Ossicular Chain Reconstruction

- “Tympanoplasty”
 - Surgery on the TM or middle ear structures
- “Mastoidectomy”
 - Drilling out mastoid air cells, to clear disease or provide improved access to middle ear
- “OCR” – Ossicular Chain Reconstruction
 - Restoration of function of ossicular chain with or without prostheses

Transcanal – Congenital Cholesteatoma
Mastoidectomy

Surgical Anatomy
Surgical Options – Restoring Hearing

- Total Ossicular Reconstruction Prosthesis (TORP)
 - Titanium, Hydroxyapatite, Fluoroplastic
 - TM to stapes footplate
- Partial Ossicular Reconstruction Prosthesis (PORP)
 - Some ossicles intact
- No reconstruction

Ossicular Reconstruction

Photos courtesy of wilsonear.com
Hearing Outcomes at 1 year

- Intact Ossicular Chain:
 - >90-95% <20 dB
- Canal Wall Up (CWU):
 - 60%-90% <20dB
 - 85%-98% <30dB
- Canal Wall Down (CWD):
 - 45%-80% <20dB
 - 75%-95% <30dB

Bone Anchored Auditory Implant – Conductive Hearing Loss

- Indications include:
 - congenital aural atresia
 - chronic suppurative otitis media
 - chronic otitis externa
 - Ossicular dislocation/trauma
 - Conductive losses not manageable surgically
 - Inability to tolerate traditional hearing aids
- Cannot have bone thresholds (SNHL) > 65dB

Bone Anchored Auditory Implant – Conductive Hearing Loss

- OAV/Goldenhaar
- Treacher Collins

Bone Anchored Auditory Implant

- Sound processor
- Osseointegrated implant
- Abutment
Bone Anchored Auditory Implant

- FDA approved for 5 years old and older
 - Skull thickness
 - Bone conduction head band until skull thick enough

Bone Anchored Auditory Implant

- Approximately 30dB gain over unaided thresholds
- Can close air bone gap well
 - 80% to within 10 dB air bone gap
 - 60% to within 5 dB air bone gap
 (Lustig et al 2001)
- Possibly better speech discrimination compared with conventional HA
- Thresholds comparable to (some ?better) to conventional HA

New Transcutaneous System
(FDA approved December 2013)
Sensorineural Hearing Loss

- Due to damage or deficit in the inner ear or auditory nerve

Sensorineural Hearing Loss

- Congenital
 - Genetic
 - Environmental/Neonatal exposures
- Inner ear malformations
- Noise Induced
- Labyrinthitis
- CNS pathology/masses
- Ototoxicity

Surgery for Sensorineural Hearing Loss

- **UNILATERAL** profound = Single Sided Deafness
 - Bone Anchored Auditory Implant
 - Other Bone Conduction Devices (Soundbite)
 - (Cochlear Implantation - future)

- **BILATERAL** severe-profound SNHL
 - Cochlear Implantation

Bone Anchored Auditory Implant – Single Sided Deafness

Cochlear Implants – Epidemiology

- As of December 2010:
 - ~ 219,000 people worldwide have CIs
 - In the US: ~42,600 adults and ~28,400 children

- ~55% of all candidates (N~12,800) for cochlear implants aged 1 to 6 years received cochlear implants in year 2000 (Bradham and Jones, 2008)

- At least 30 kids/year from NCH catchment area
Cochlear Implant – Audiologic Candidacy

FDA approval: 1 yr and older

- 1 yr to 2 yrs: BILATERAL profound hearing loss
- >2 yrs old: BILATERAL severe to profound hearing loss

- Limited auditory development with best fit hearing aids
 - IT-MAIS for younger kids
 - Open-set word recognition scores for older kids

Cochlear Implant Evaluation

- Audiologic evaluation (Audiology)
- Medical evaluation and imaging (ENT)
- Speech/Communications evaluation
- Social support evaluation (Speech)
- Hearing Aid Trial
- Financial Clearance
- Auditory therapy
- Vaccination
- Implantation
- Then, REHAB, REHAB, REHAB!!!!

The Cochlear Implant

- receiver-stimulator
- magnet
- ground electrode

Spiral Ganglia

http://bmc.erin.utoronto.ca/~andreaz/newMediaSite/

Surgery

- Cochlear Implant procedure:
Surgery

• Cochlear Implant procedure:

Cochlear Implant Outcomes

• Depends on age of implantation!
 – Critical point around 3-4 yrs old
• 60-80% can use telephone
• 40-70% have intelligible speech
• 80-90% do not require lip reading
• Can achieve similar academic levels as normal hearing peers
• Can achieve similar occupational levels

Bilateral Cochlear Implantation

In kids:
• Improved sound localization
• Probably better speech perception and understanding in noise

Complications

• Wound infection
• Extrusion of device
• Device failure (hard or soft)
• Meningitis
• Failure to use implant
• CSF leak
• Vertigo/Disequilibrium
• Facial nerve paralysis
• Malpositioned implant

Vaccination and CI

• Bacterial meningitis is more common in children with cochlear implants than in controls
• Increased risk of meningitis (4-30x) due to S. Pneumoniae

Recommendations:
• All children should get PCV-13 and Hib (as per routine)
• At age 2, PPSV23 completed at least 2 weeks before surgery
• Influenza vaccine to reduce otitis media

Critical, and REQUIRED step for implantation
Current Frontier of CI

- Bimodal habilitation (one ear HA, one ear CI)
- Younger implantation
- Severe to Profound criteria for youngest kids
- Auditory Neuropathy
- **Unilateral** Profound Sensorineural Hearing Loss
- Complex medical and developmental comorbidities
- Hearing preservation surgery and “electroacoustic stimulation” (CI and HA in same ear)

Learning Objectives

At the end of this session, participants will be able to:

– feel more familiar with surgical ear anatomy
– identify at least two surgical interventions for conductive hearing loss
– identify at least two surgical interventions for sensorineural hearing loss